Self-diffusion of methane in single-walled carbon nanotubes at sub- and supercritical conditions.
نویسندگان
چکیده
The diffusivities of methane in single-walled carbon nanotubes (SWNTs) are investigated at various temperatures and pressures using classical molecular dynamics (MD) simulations complemented with grand canonical Monte Carlo (GCMC) simulations. The carbon atoms at the nanotubes are structured according to the (m, m) armchair arrangement and the interactions between each methane molecule and all atoms of the confining surface are explicitly considered. It is found that the parallel self-diffusion coefficient of methane in an infinitely long, defect-free SWNT decreases dramatically as the temperature falls, especially at subcritical temperatures and high loading of gas molecules when the adsorbed gas forms a solidlike structure. With the increase in pressure, the diffusion coefficient first declines rapidly and then exhibits a nonmonotonic behavior due to the layering transitions of the adsorbed gas molecules as seen in the equilibrium density profiles. At a subcritical temperature, the diffusion of methane in a fully loaded SWNT follows a solidlike behavior, and the value of the diffusion coefficient varies drastically with the nanotube diameter. At a supercritical temperature, however, the diffusion coefficient at high pressure reaches a plateau, with the limiting value essentially independent of the nanotube size. For SWNTs with the radius larger than approximately 2 nm, capillary condensation occurs when the temperature is sufficiently low, following the layer-by-layer adsorption of gas molecules on the nanotube surface. For SWNTs with a diameter less than about 2 nm, no condensation is observed because the system becomes essentially one-dimensional.
منابع مشابه
Study of Methane Storage and Adsorption Equilibria in Multi-Walled Carbon Nanotubes
Adsorbed natural gas has various advantages and is relatively more economical than liquefaction and compression. Carbon nanotubes can be introduced as a new candidate for natural gas storage. In this study, adsorption of methane was firstly studied on the as-prepared multi-walled carbon nanotubes, and then chemical and physical treatment of MWCNTs was performed to enhance the methane adsorp...
متن کاملDevelopment of Single Walled Carbon Nanotube-Molybdenum Disulfide Nanocomposite/poly-ethylene Glycol Modified Carbon Paste Electrode as an Electrochemical Sensor for the Investigation of Sulfadiazine in Biological Samples
A rapid electrochemical analysis of sulfadiazine (SFZ) has been carried out by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods by employing a sensitive single walled carbon nanotube-molybdenum disulfide nanocomposite/poly ethylene glycol modified carbon paste electrode (SWCNT-MoS2/PEG/CPE). The SFZ shows anodic peak potential at 0.94 V (vs. Ag/AgCl) in 0.1 M PBS of pH 7...
متن کاملPreparation of PMMA/MWNTs Nanocomposite Microcellular Foams by In-situ Generation of Supercritical Carbon Dioxide
Nanocomposites containing poly(methyl methacrylate) (PMMA) and surface functionalized Multi-Walled Carbon Nanotubes (MWNTs) were synthesized. The dispersion of MWNTs in PMMA was characterized using Transmission Electron Microscopy (TEM).The synthesized nanocomposites were successfully foamed using a simple method based on the in-situ generation of supercritical carbon dioxide (CO2</sub...
متن کاملAdsorption of 1-chloro-4-nitrobenzene from aqueous solutions onto single-walled carbon nanotubes
In this study adsorption of 1-chloro-4-nitrobenzene on single walled carbon nanotubes has been investigated. The effect of contact time, pH, initial concentration of 1-chloro-4-nitrobenzene, adsorbent dosage and temperature on its adsorption has been carried out in order to find optimum adsorption conditions. Adsorption isotherms and related constants were also determined. Results showed that ...
متن کاملCatalytic nanoreactors in continuous flow: hydrogenation inside single-walled carbon nanotubes using supercritical CO2.
One nanometre wide carbon nanoreactors are utilised as the reaction vessel for catalytic chemical reactions on a preparative scale. Sub-nanometre ruthenium catalytic particles which are encapsulated solely within single-walled carbon nanotubes offering a unique reaction environment are shown to be active when embedded in a supercritical CO2 continuous flow reactor. A range of hydrogenation reac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 20 9 شماره
صفحات -
تاریخ انتشار 2004